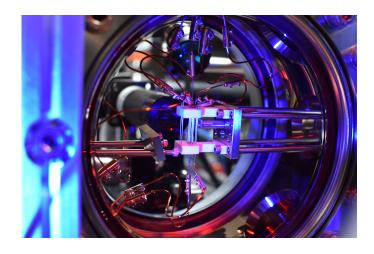
CESQ Colloquium

Tuesday November 18 @ 3 PM

Seminar Room, Centre Européen de Sciences Quantiques, Campus de Cronenbourg

Tracy Northup


University of Innsbrück

Levitated nanoparticles: a route to the quantum regime

Can we prepare quantum-mechanical states of motion of macroscopic objects — for example, superposition states of massive objects where the distance scale of the superposition is as large as the object itself? Such states would allow us both to investigate fundamental questions about quantum mechanics and to build novel sensors and transducers. A levitated nanoparticle in ultrahigh vacuum is a promising experimental system with which to investigate these questions.

I will present experimental work with silica nanoparticles in ion traps in which we aim to bring these particles into the quantum regime. Here, we adapt techniques originally developed for

trapped atomic ions, including detection via self-interference and sympathetic cooling, for the domain of nanoparticles [1,2]. Quality factors above 10¹⁰ provide evidence of the particles' extreme isolation from their environment [3]. Recently, we have trapped a calcium ion and a nanoparticle together in a linear Paul trap [4], which provides a potential route to prepare the nanoparticle's motion in nonclassical states. I will discuss challenges that lie ahead on the road to macroscopic quantum states and possible approaches, including hybrid traps.

[1] L. Dania, K. Heidegger, D. S. Bykov, G.

Cerchiari, G. Arenada, T. E. Northup, Phys. Rev. Lett. 129, 013601 (2022)

[2] D. S. Bykov, L. Dania, F. Goschin, T. E. Northup, Optica 10, 438 (2023)

[3] L. Dania, D. S. Bykov, F. Goschin, M. Teller, A. Kassid, T. E. Northup, Phys. Rev. Lett. 132, 133602 (2024)

[4] D. S. Bykov, L. Dania, F. Goschin, T. E. Northup, Phys. Rev. Lett., in press (2025)

